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ABSTRACT
It is now well known that in the mammalian body vitamin D is converted by successive hydroxylations to 1,25-dihydroxyvitamin D (1,25D), a
steroid-like hormone with pleiotropic properties. These include important contributions to the control of cell proliferation, survival and
differentiation, as well as the regulation of immune responses in disease. Here, we present recent advances in current understanding of the role of
1,25D in myelopoiesis and lymphopoiesis, and the potential of 1,25D and analogs (vitamin D derivatives; VDDs) for the control of hematopoietic
malignancies. The reasons for the unimpressive results of most clinical studies of the therapeutic effects of VDDs in leukemia and related diseases
may include the lack of a precise rationale for the conduct of these studies. Further, clinical trials to date have generally used extremely
heterogeneous patient populations and, inmany cases, small numbers of patients, generally without controls. Although low calcemic VDDs have
been used and combined with agents that can increase the leukemia cell killing or differentiation effects in acute leukemias, the sequencing of
agents used for combination therapy should to be more clearly delineated. Most importantly, it is recommended that in future clinical trials the
rationale for the basis of the enhancing action of drug combinations should be clearly articulated and the effects on anticancer immunity should
also be evaluated. J. Cell. Biochem. 116: 1500–1512, 2015. � 2015 Wiley Periodicals, Inc.
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Pluripotent hematopoietic stem cells in the bone marrow give
rise to two major classes of leukocytes—myeloid and lymphoid

cells. Orchestrated by tightly regulated context-dependent develop-
mental cues, hematopoietic stem cells differentiate into monocytes/
macrophages, eosinophils, basophils, neutrophils, myeloid dendritic
cells, red blood cells and platelets (myeloid origin), as well as B cells,
T cells, plasmacytoid dendritic cells and NK cells (lymphoid origin)
to constitute a fully functional repertoire of diverse cell types with
specialized functions.

In recent years vitamin D has emerged as a pivotal regulator of
multiple cell events including cell proliferation, survival, differentia-
tion, immune activities and regulation of the cytokine milieu. These
investigations were largely spurred by the discovery that vitamin D
receptor (VDR) is expressed in a variety of mammalian cells including
the immune cells, as are the enzymes that catalyzes the conversion
of vitamin D from its inactive form to its biologically active form
(1,25-dihydroxyvitamin D3—both vitamin D3 or plant derived
vitamin D2 are abbreviated here as 1,25D), also known as calcitriol.
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Thus, not only are mammalian cells capable of sensing systemic
1,25D levels, but can also modulate the localized concentrations of
1,25D [Chun et al., 2014].

Here we discuss our current understanding of vitamin D regulation
of myelopoiesis and lymphopoiesis, as discovered using both in vitro
and in vivo models of vitamin D deficiency or supplementation
during normal hematopoiesis and hematopoietic malignancies.While
supporting epidemiological studies were also important in document-
ing the health relevance of vitamin D [Giovannucci et al., 2006; Hart
et al., 2011; Grant, 2014; Shui and Giovannucci, 2014], relatively
little information is available on the role of vitamin D in
hematopoiesis from these studies.

VITAMIN D AND NORMAL HEMATOPOIESIS

MYELOPOIESIS
The bioactive forms of vitamin D predominantly exert their biological
effects through the VDR, as determined in model systems of
genetically modified mice and cultured leukemia cells. Mice with
genetic deletion (KO) of VDR serve as a robust model of human
vitamin D deficiency, which replicate clinical manifestations of
hypocalcemia, hyperparathyroidism, hypophosphatemia, rickets and
osteomalacia. Interestingly, VDR KO mice have normal hematopoie-
sis, with normal relative numbers of red and white blood cells [O0Kelly
et al., 2002]. However, vitamin D derivatives (VDDs), including 1,25D,
are known to influence later stages of hematopoiesis by cellular
signaling cascades. Since neoplasia can be perceived as a disease of
communication not only between but also within cells, it is of
fundamental importance to tease out the networks of these signaling
pathways.

Thus, studies using humanmyeloid leukemia cells have established
the beneficial effects of 1,25D in promotingmonocytic differentiation
and modulating immune functions, and are inspiring further detailed
mechanistic studies to identify specific molecular targets for driving
terminal differentiation and/or apoptosis of leukemic cells.
Vitamin D-regulated MAPK signaling pathways in hematopoietic
cells. The mitogen-activated protein kinase (MAPK) pathways are
key components of the signal transduction cascades which link
diverse extracellular stimuli to proliferation, differentiation, and
survival of different cell types, including hematopoietic cells [Davis,
1993; Lewis et al., 1998; McCubrey et al., 2007; Geest and Coffer,
2009]. Numerous studies have shown that dysregulated activation of
MAPKs plays an important role in the transformation of myeloid cells
to leukemic blasts, andMAPK pathways also play an important role in
the regulation by 1,25D of cell proliferation, differentiation and
apoptosis in AML [Studzinski et al., 2006; Gocek and Studzinski,
2009]. The members of the MAPKs family are serine/threonine
kinases which participate in four major signaling pathways: the
extracellular signal-regulated protein kinase (ERK), the p38 kinase,
the c-Jun N-terminal kinase (JNK), and the ERK5 cascades (Fig. 1)
[Dhillon et al., 2007]. Most MAPKs exist as different isoforms, such as
ERK1/2; p38a, p38b, p38g, and p38d [Krishna and Narang, 2008];
and JNK1, JNK2 and JNK3 [Karin and Gallagher, 2005; Krishna
and Narang, 2008]. There are at least three main tiers of each
MAPK signaling cascade, a MAPK kinase kinase (MAP3K), a
MAPK kinase (MAP2K), and a MAPK. Upstream MAPK kinases

phosphorylate and activate downstream MAPKs, which in turn
phosphorylate various downstream proteins, such as transcription
factors (e.g., c-Jun, Elk-1, C/EBPs, and MEF2C) [Yordy and
Muise-Helmericks, 2000; Marcinkowska et al., 2006; Kasza, 2013;
Wang et al., 2014] and apoptosis-related proteins (e.g., the pro-
apoptotic protein BIM and the anti-apoptotic proteinMCL-1) [Weston
et al., 2003; Ewings et al., 2007;McCubrey et al., 2007; Nishioka et al.,
2010], thereby promoting the survival of cancer cells. These MAPK
pathways can interact and cooperate with each other to transmit
signals to the downstream regulators and determine cell fate [Krishna
and Narang, 2008].

The ERK1/2 pathway is the best studied and is involved in the
regulation of the proliferation, survival and differentiation of
hematopoietic cells [Davis, 1993; Geest and Coffer, 2009]. The
evidence for a role of this MAPK pathway in AML includes
constitutive activation of ERK in a subset of primary AML cell
samples, and the activation of MEK which contributes to constitutive
ERK activation [Towatari et al., 1997; Milella et al., 2001; Ricciardi
et al., 2005; Prijic et al., 2014]. The MEK1/ERK1/2 pathway can be
activated through a wide range of extracellular signals such as
cytokine and growth factor stimuli, which sequentially activate Raf1,
MEK1/2, and then ERK1/2. Of clinical interest, activation of the RAF/
MEK/ERK pathway conveys a poor prognosis, and constitutes a
promising target for therapeutic intervention [Ricciardi et al., 2012].

Activated ERK translocates into the nucleus and activates a
number of nuclear transcription factors that are important for
myeloid differentiation, such as Elk-1, MEF2C and C/EBPs
[Marcinkowska et al., 2006; Kasza, 2013; Wang et al., 2014].
ERK1/2 can also be activated through the formation of a signaling
complex with multiple kinases with the help of a scaffold protein, the
Kinase Suppressor of Ras-1 (KSR-1) [Wang and Studzinski, 2004]. The
MEK1/2-ERK1/2 cascade is an important regulator pathway of
monocytic differentiation in AML cells, and can act as a biomarker of
early monocytic differentiation [Wang and Studzinski, 2001].

The p38 and JNK MAPKs pathways are activated by pro-
inflammatory cytokines or cellular stresses, and JNK also by VDDs
[Studzinski et al., 2005]. The p38 MAPK family consists of four
isoforms: p38a, b, g, and d which display tissue-specific patterns of
expression [Hale et al., 1999]. p38a and b are widely expressed
among all tissues, whereas the expression of p38g and d appears to be
more specific to certain tissues, for example, p38g in skeletal muscle,
and p38d in endocrine glands [Uddin et al., 2004]. The p38MAPKs are
activated by the phosphorylation by upstream kinases MKK3 and
MKK6, while activated p38 MAPKs phosphorylate and activate
downstream targets, such as MAPKAP kinase 2 [Rane et al., 2001].
Based on sequence homology and substrate specificities, the
p38MAPK family can be divided into two subsets with p38a and
p38b in one set and p38g and p38d in the other set. Importantly for
vitamin D research, the inhibition of p38a and p38b actually
potentiates the differentiating action of 1,25D, and is associated with
a compensatory upregulation of p38g and p38d in AML cells. This
effect is increased by the presence of carnosic acid (CA), a plant-
derived polyphenol with antioxidant properties [Studzinski et al.,
2005; Wang et al., 2005a], and suggests that one or more downstream
targets of p38 a and b exert negative feedback on the activity of an
upstream regulator of several branches of MAPK pathways (JNK,
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ERK1/2, p38), while a reduction of ROS levels by CA [Danilenko et al.,
2003] appears to favor this effect.

The JNK kinases are important members of MAPK superfamily,
often referred to as stress-activated protein kinases (SAPK). This
family includes three members: JNK1, JNK2 and JNK3 [Fleming et al.,
2000; Karin and Gallagher, 2005]. JNKs are activated by upstream
kinases, such as MKK4 and MKK7, and regulate target gene
expression through a variety of transcription factors, such as
c-Jun, ATF-2, and Elk-1, to mediate cell proliferation, differentiation
or survival [Kyriakis et al., 1994; Lee et al., 2003]. c-Jun is essential for
monocytic differentiation of human AML cells, as a part of the AP-1
transcription factor [Wang and Studzinski, 2001, 2006]. Studies with
AML model systems have indicated a regulatory function of JNK
activity in 1,25D-induced differentiation and the consequent
phosphorylation of the c-Jun protein [Wang et al., 2003]. Another
study concluded that JNK2 is a negative regulator of monocytic
differentiation, by JNK2 antagonizing the signaling of differentiation
by JNK1 in human AML cells resistant to VDDs [Chen-Deutsch et al.,
2009].

While the three main MAPK pathways discussed above have been
extensively studied in relation to AML, the role of the “Big MAPK”
ERK5 (also known as BMK1) has only rarely been explored in relation
to hematopoiesis or AML therapy. Like the other MAPKs this pathway
has been implicated in cell proliferation, differentiation and survival,
but ERK5 signaling has some distinct effects from the other MAPK
pathways [Wang et al., 2015]. The upstream kinases MEKK2 and
MEKK3 activate MEK5, which then phosphorylates and activates
ERK5 on the N-terminal TEY sequence. The activated ERK5
subsequently undergoes autophosphorylation on the C-terminal
transcriptional activation domain [Mody et al., 2003; Morimoto et al.,
2007]. The sequential phosphorylation allows the activated ERK5 to
translocate into the nucleus and to activate transcription factors, such
as the myocyte enhancer factor 2C (MEF2C) [Kato et al., 1997; Wang
et al., 2014; Zheng et al., 2014]. It has been shown that reduction in
ERK5 MAPK activity by inhibition of Cot1 kinase, which can also
activate ERK5 [Chiariello et al., 2000], enhances the expression of
1,25D-induced differentiation-promoting factors and cell cycle
regulators such as p27Kip1, leading to cell cycle arrest [Wang

Fig. 1. Intracellular signaling pathways induced by 1,25D in AML cells. The MAPK and other signaling pathways discussed in the text are outlined here. In these cells the effects of
1,25D are initially mediated by an upregulation of the levels of vitamin D receptor (VDR) and activation of the upper echelons of kinase cascades, resulting in cell differentiation,
arrest of the cell cycle, and changes in cell survival control, including apoptosis. Dotted lines depict suggested interactions. The regular arrows show activation, blunt ended arrows
inhibition. The latter includes the inhibition by ERK5 of the progression of the monocyte (Mo) differentiated by 1,25D to the macrophage (MF).
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et al., 2010]. ERK5 can also regulate C/EBPb expression via MEF2C
[Zheng et al., 2014], which controls the expression of monocytic
differentiation marker CD14, and thus promotes monocytic differen-
tiation. On the other hand, a recent study has demonstrated that while
playing a positive role in monocytic differentiation, ERK5, but not
ERK1/2, inhibits the progression of monocytic phenotype to the
terminal differentiation into functioning macrophages by negatively
regulating the expression of macrophage colony stimulating factor
receptor (M-CSFR) in AML cells (Fig. 1) [Wang et al., 2015]. Since
tumor-associated macrophages (TAMs) are considered to have
generally a protumoral role by promoting key processes in tumor
progression [De Palma and Lewis, 2013; Noy and Pollard, 2014],
the 1,25D-augmented ERK5 function [Wang et al., 2014] illustrated in
Figure 1, may explain the beneficial effects of 1,25D on some solid
tumors [Kaler et al., 2009; Kaler et al., 2010; Zhang et al., 2014].

Vitamin D has also been reported to affect both the enhancement
of and the resistance to the differentiating action of VDDs by
modulating the activity of MAPK pathways. For instance, CA
combined with SB202190, a p38a/b MAPK inhibitor, increased the
potency of 1,25D in HL60 cells [Wang et al., 2005a]. In these
experiments, determination of the activity of MAPK pathways
showed that increased differentiation was associated with enhanced
activity of JNK pathway in all responding cell AML subtypes [Wang
et al., 2005a,b]. Other examples of 1,25D combinations with other
compounds that have a synergistic effect with 1,25D, which involves
at least in part the activation of MAPK cascades, are provided by
studies in a number of different laboratories. For example, it is
reported that non-specific COX inhibitors acetyl salicylic acid or
indomethacin signal by Raf1 but not ERK1/2 pathway [Jamshidi et al.,
2008], ceramide derivatives signal via PI3-K/PKC/JNK/ERK pathway
[Kim et al., 2007], nargenicin via PKCb1/MAPK pathway [Kim et al.,
2009], and all show synergy with VDDs by these similar but not
identical MAPK signaling pathways. Also, iron chelating agents
which induce iron deprivation can potentiate the VDR pathways and
magnify the activation of JNK induced by VDDs [Callens et al., 2010].
More recently, epidermal growth factor receptor (EGFR) inhibitors
erlotinib and gefitinib were reported to be potent enhancers of
differentiation of AML cells, presumably by the effects of MAPKs
downstream of EGFR [Lainey et al., 2013].

Conversely, MAPKs can also be involved in resistance to 1,25D. An
example is provided by HL60-40AF cells, a subclone of HL60 cells
resistant to 1,25D [Studzinski et al., 1996], in which protein levels of
Hematopoietic Progenitor Kinase 1 (HPK1), an upstream MAP4K
serine/threonine kinase, are dramatically increased. The HPK1 protein
is further increased when the 1,25D resistance of 40AF cells is
partially reversed by the addition of carnosic acid and p38MAPK
inhibitor SB202190. Knockdown of HPK1 reduces 1,25D/VDD-
induced differentiation of both 1,25D-sensitive HL60 and U937 cells
and 1,25D-resistant 40AF cells. Molecular basis for this was
shown to be that the full-length HPK1 protein is a positive regulator
of VDD-induced differentiation in AML cells, but the cleaved HPK1
fragment inhibits differentiation. Thus, high HPK1 cleavage activity
contributes to 1,25D/VDD resistance [Chen-Deutsch and Studzinski,
2012].
Other vitamin D-regulated signaling pathways in hematopoietic
cells. Although the regulation of vitamin D-induced differentiation

and anti-proliferative effects in hematopoietic cells is especially
well documented for the MAPK pathways, VDDs can also
stimulate, and occasionally inhibit, activation of several other signal
transduction circuits, including the phosphatidylinositol 3-kinase
(PI3K)/AKT/mammalian target of rapamycin (mTOR), nuclear factor
kappa B (NF-kB) and Janus kinase and signal transducer and
activator of transcription (JAK-STAT) pathways [Muthian et al.,
2006; Stoffels et al., 2006; Janjetovic et al., 2010; Lisse and Hewison,
2011; Datta-Mitra et al., 2013].

It is now well established that the PI3K/AKT/mTOR signaling
axis plays a central role in cell proliferation and survival
under physiological conditions, and aberrant PI3K/AKT/mTOR
signaling has been implicated in many human cancers, including
AML. An early observation in the field was that the AKT pathway is
activated by 1,25D and participates in its anti-apoptotic effect
and cell cycle control in differentiating HL60 cells [Zhang et al.,
2006]. Wang and others [Wang et al., 2009] suggested that
AKT regulates 1,25D-induced leukemia cell differentiation via the
RAF/MEK/ERK signaling, linking the AKT and the MAPK pathways.
It was also reported that inhibition of mTOR by the rapamycin
analog everolimus potentates the effects of 1,25D on U937 AML
cells [Yang et al., 2010], and that an analog of 1,25D (“BE”)
induces immunosuppression through the PI3K/AKT/mTOR
cascade [Datta-Mitra et al., 2013]. The 1,25D-stimulated increase
in steroid sulphatase activity in AML cell lines is also achieved
via the PI3Ka pathway [Hughes et al., 2008]. In addition, the
AKT/mTOR pathway has been reported to transduce signals
provided by VDDs to diverse cell types, including skeletal muscle
[Buitrago et al., 2012; Salles et al., 2013], primary human
keratinocytes [De Haes et al., 2004], squamous cell carcinoma
cells [Ma et al., 2006], and breast, prostate and leukemia cell lines
[O0Kelly et al., 2006]. Collectively, these reports are in keeping with
the suggestion that mTOR may be a general integrator of both
immunomodulatory and antiproliferative activities of 1,25D [Lisse
and Hewison, 2011].

A link between PI3K/AKT and NF-kB activation was reported
in HL60 cells exposed to 1,25D by showing PI3K/AKT-dependent
degradation of IkB, and was suggested to be contributory to
vitamin D-mediated immune regulation [Tse et al., 2007]. Also,
inhibition of NF-kB activity by antisense oligonucleotides to its
various subunits [Sokoloski et al., 1998] or by phytochemicals, such
as curcumin, b-carotene and parthenolide [Kang et al., 2002;
Sokoloski et al., 1997a,b] enhance 1,25D-induced differentiation of
HL60 cells into monocytes. Perhaps related, is the finding that
combined activation of the JAK-STAT, p38 MAPK, and NF-kB
pathways is necessary to regulate the expression of 1a-hydroxylase
in monocytes in a synergistic way, with C/EBPb being a likely
downstream target [Stoffels et al., 2006]. It is also known that 1,25D
modulates the JAK-STAT pathway in IL-12/IFN gamma axis leading
to Th1 response in experimental allergic encephalomyelitis [Muthian
et al., 2006], and that 1,25D blocks TNF-induced monocytic tissue
factor expression by the inhibition of activation pathways for
transcription factors AP-1 and NF-kB [Chung et al., 2007]. It is
therefore clear that there is considerable cross talk between pathways
that propagate signals provided to hematopoietic cells by vitamin D
and its metabolites.
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Thus, studies using human myeloid leukemia cells have
established the beneficial effects of 1,25D in promoting monocytic
differentiation and modulating immune functions, and are inspiring
further detailed mechanistic studies to identify specific molecular
targets for driving terminal differentiation and/or apoptosis of AML
and other leukemic cells.

LYMPHOPOIESIS
Studies using VDR KO mice lacking vitamin D signaling have also
identified a critical role of vitamin D in the thymic development
of functional invariant Natural Killer T (iNKT) cells bearing the
Va14-Ja18 rearranged T cell receptor (TCR) [Yu and Cantorna, 2008].
Vitamin D deficiency resulted in the absence of the expression
of T-bet transcription factor in developing iNKT cells, and was
associated with compromised expression of the surface glycoprotein
CD1d in the thymus of VDR KO mice, suggesting ineffective antigen
presentation and selection of iNKT cells in the thymus. Notably, the
numbers of TCRab CD8aa intraepithelial lymphocytes (IELs) were
also compromised in the VDR KO mice [Yu et al., 2008]. In vitro
studies of hematopoiesis have identified an inhibitory effect of
vitamin D on NK cell development, while promoting myeloid
differentiation [Weeres et al., 2014]. However, the differentiation
of mature conventional TCRab CD8aa T cells remains largely
unaltered in the absence of 1,25D signals. Analysis of CD4 and CD8
single- and double-positive and double-negative T cells in the thymus
identified no differences between WT and VDR KO mice. Likewise,
natural regulatory T cell numbers are also largely unaltered in
the absence of vitamin D signaling under homeostatic conditions
[Yu and Cantorna, 2008, 2011].

The iNKT cells are known for their ability to rapidly produce
inflammatory and immune stimulatory cytokines such as IFN-g,
TNF-a and IL-2, and their deficiency is associated with development
of autoimmune disorders such as diabetes, inflammatory bowel
disease (IBD) and atherosclerosis [Wobke et al., 2014; Yin and
Agrawal, 2014]. Likewise, CD8aa cells are also implicated in
suppressing gastrointestinal inflammation [Cheroutre and Lambolez,
2008]. Thus, compromised development of iNKT and CD8aa T cells in
the absence of vitamin D signaling may be responsible in part for the
increased susceptibility to IBD in human populations with low
vitamin D status. Indeed, IBD patients are associated with low vitamin
D status [Cantorna and Mahon, 2004], and polymorphisms in the vdr
gene are associated with increased susceptibility for Crohn0s disease
and ulcerative colitis [Simmons et al., 2000; Dresner-Pollak et al.,
2004].

Collectively, thesefindings, and other ongoing studies, can provide
a new understanding of dysregulated differentiation in human
hematopoietic leukemias.

VITAMIN D AND MALIGNANCIES

Accumulating evidence indicates that inadequate vitamin D levels are
associated with increased risk of several types of cancer [Shui and
Giovannucci, 2014]. With regard to hematopoietic malignancies, an
inverse correlation has been observed between plasma concentrations
of 25-hydroxyvitamin D3 (25D) and a risk and disease progression of
CLL [Shanafelt et al., 2011; Molica et al., 2012; Luczynska et al.,

2013]. Also, low 25D levels were found to be associated with adverse
outcomes in patients with AML [Lee et al., 2014]. The totality of
existing in vitro, in vivo, epidemiological, and clinical studies
demonstrate anti-proliferative and differentiation-inducing effects of
VDDs on many cancer cell types, and strongly indicate a role for
vitamin D in the reduction of total human mortality [Autier and
Gandini, 2007].

ANTI-LEUKEMIC EFFECTS OF 1,25D AND OTHER VITAMIN D
DERIVATIVES IN MYELOID MALIGNANCIES
The potential therapeutic and chemopreventive significance in
myeloid leukemias of VDDs acting alone. The demonstration of a
marked antiproliferative and differentiation-inducing activity of
1,25D and its synthetic low-calcemic analogs in various cancer
cell lines including AML, patient-derived primary cell cultures and
animal models has suggested a potential therapeutic and chemo-
preventive significance of VDDs [Abe et al., 1981; Koeffler et al.,
1984; Studzinski et al., 1985]. To date, a number of clinical trials of
VDDs have been conducted in various types of solid cancers.
However, apart from some encouraging results, these compounds
have not yet shown consistent clinical responses, and hypercalcemia
still remains the major limiting factor.

Currently, analogs of the plant-derived vitamin D2 are among the
best candidates for an eventual use. Doxercalciferol (1a-hydrox-
yvitamin D2, trade name Hectorol) and paricalcitol (19-nor-1,25-
(OH)2-vitamin D2, trade name Zemplar) are approved in the USA for
human use to suppress parathyroid hormone synthesis in dialysis
patients. However, the concentrations used for this purpose are
unlikely to have an effect on AML blasts, as shown by the negligible
therapeutic effect of the administration of doxercalciferol to patients
with MDS, a preleukemic condition [Petrich et al., 2008]. Recent
laboratory studies also show that modification of the vitamin D
analog structure including the removal of the 20-methyl group from
the side chain of the analog selectively eliminates bone calcium
mobilization activity [Barycki et al., 2009]. This was followed by other
studies including the synthesis of 20-hydroxyvitamin D2, a novel
analog of vitamin D2, also showing a modification at C20, and
the demonstration that this analog had reduced calcemic activity
[Slominski et al., 2011]. While 20-hydroxy vitamin D2 was shown to
havemore potent anti-proliferative and pro-differentiation effects on
epidermal cells, its activity on myeloid leukemia cells tested (K562-
CML and HL60-AML) was markedly lower. Thus, while the calcemic
activity of this analog was shown to be reduced in short term (7 days)
experiments in rats [Slominski et al., 2011], its prospects for clinical
application to human leukemia are at best uncertain at this time. An
important concern regarding treatment of neoplastic diseases with
VDDs alone is the possibility that prolonged treatment with 1,25D can
result in the development of a resistant and more aggressive disease
associated with increased distant organ metastasis as recently shown
in a mouse model of prostate cancer [Ajibade et al., 2014].

Thus, as summarized in recent reviews [Harrison and Bershadskiy,
2012; Kim et al., 2012; Marchwicka et al., 2014] despite several
examples of minor clinical efficacy, barriers remain to the successful
application of VDDs in the treatment of MDS and AML. These barriers
include: (i) The lack of definition of a sensitive target sub-population
of AML patients because clinical trials conducted so far have
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generally used extremely heterogeneous patient populations and,
in many cases, small numbers of patients, usually without controls.
(ii) The still unknown optimal choice of a vitamin D analog and the
dosing schedule. (iii) Most importantly, contrary to some optimistic
expectations [Barycki et al., 2009], there is still no solid evidence that
calcium mobilizing properties of the thousands of vitamin D analogs
synthesized and tested to date can be dissociated from their
differentiation-inducing actions to the extent that they can be useful
in the clinic.
Anti-myeloid leukemia effects of 1,25D/VDDs combinations
with other non-cytotoxic agents. Since the discovery of their
anticancer activity in experimental models, the idea of administering
1,25D and its analogs either as adjuvants or as integral part of
conventional chemotherapy have attracted much interest [Kasukabe
et al., 1987; Kumagai et al., 2005; Studzinski et al., 1986]. Evidence
accumulated over more than 30 years provides the basis for a
combination strategy for vitamin D-based cancer therapy which may
prove more effective compared with VDDs administered as single
agents [Ma et al., 2010]. Initial observations made in 1983 by
Japanese and Swedish research groups demonstrated a marked
synergistic induction of differentiation in AML cell lines by near
physiological concentrations of 1,25D combined with the synthetic
glucocorticoid dexamethasone [Miyaura et al., 1983] or the vitamin A
derivative all-trans retinoic acid (ATRA) [Olsson et al., 1983]. Since
that time, numerous studies have confirmed the ability of 1,25D and
its analogs to cooperate in the anticancer effects with various agents,
in different experimental models of neoplasia (reviewed in
[Danilenko and Studzinski, 2004; Luong and Koeffler, 2005; Ma
et al., 2010]) and in some clinical studies described below and
elsewhere. These include differentiation inducers and enhancers,
most prominently ATRA [Bastie et al., 2004, 2005; Danilenko and
Studzinski, 2004; Takahashi et al., 2014], anti-inflammatory agents
[Sokoloski and Sartorelli, 1998; Krishnan et al., 2007; Jamshidi et al.,
2008; Laverny et al., 2009] and, importantly, phytochemicals
[Sokoloski et al., 1997a; Danilenko et al., 2001; Kang et al., 2001;
Wang et al., 2005b; Shabtay et al., 2008; Bobilev et al., 2011].

On the encouraging side, several recent clinical studies in which
VDDs were combined with other drugs showed promising outcomes.
For instance, in a retrospective case–control study the therapeutic
effects of a combination treatment with 25D and the iron-chelating
agent deferasirox (DFX) were demonstrated in elderly patients with
AML who failed to respond to demethylating agents [Paubelle et al.,
2013]. Median survival of patients treated with this combination was
significantly increased in comparison with matched patients
receiving best supportive care alone. Interestingly, the only factor
associated with an increased overall survival was the level of serum
25D. The prognostic role of 25D was also demonstrated in another
study where its serum levels were evaluated in newly diagnosed
patients with AML who were intensively treated with conventional
chemotherapy [Lee et al., 2014]. This study demonstrated that
insufficient/deficient 25D levels were associated with worse relapse-
free survival compared with normal 25D levels. Another study
evaluated a 4-year maintenance therapy with low-dose chemothera-
py combined with 1,25D and 13-cis retinoic acid in poor-prognosis
elderly patients with AML andMDS who were ineligible for allografts
[Ferrero et al., 2014]. This treatment resulted in a lower relapse

incidence and a longer disease-free survival compared to the control
patients who did not receive maintenance treatment. A 5-year overall
survival of the treated patients was also prolonged in the control
group. The results suggest that this strategy of combination
maintenance therapy may improve the outcome of poor-risk AML
and MDS patients.
Anti-myeloid leukemia effects of 1,25D/VDDs in combination
with cytotoxic and cytostatic drugs. A number of preclinical
studies have shown that VDDs can potentiate cytotoxicity of
chemotherapeutic agents, such as 1-b-D-arabinofuranosyl cytosine
(Ara-C) in AML cells [Studzinski et al., 1991]. These VDDs cooperated
with several cytotoxic agents, such as doxorubicin, cisplatin, imatinib
and docetaxel in growth arrest of different cancer cell types
[Pelczynska et al., 2006; Wietrzyk et al., 2007; Switalska et al.,
2012]. Both 1,25D [Rogers et al., 2014] and paricalcitol [Kumagai
et al., 2005] potentiated the cytotoxic effect of arsenic trioxide on
AML cells. Inhibition of mTORC1 by the rapamycin analog
everolimus potentiated the growth-inhibitory and differentiation-
inducing effects of 1,25D in AML cells both in vitro and in vivo
[Yang et al., 2010]. In another study, 1,25D enhanced the apoptotic
activity of MDM2 antagonist nutlin-3a in AML cells expressing
wild-type p53 [Thompson et al., 2010]. Several studies have
indicated the ability of 1,25D to cooperate in the induction of
differentiation and growth arrest with epigenetically active drugs,
such as the demethylating agents 5-aza-20-deoxycytidine [Niitsu
et al., 2001] and decitabine [Koschmieder et al., 2007] and the
histone deacetylase (HDAC) inhibitor sodium butyrate [Hoessly et al.,
1989]. These data suggest that the transcriptional activity of VDR
may be epigenetically suppressed in leukemic cells, thus providing
the mechanistic basis for potential epigenetic leukemia therapy
involving VDDs.

VITAMIN D AND ALL
Acute lymphoblastic leukemias (ALLs) are the most common form of
pediatric malignancy with bimodal peak incidence between 2–5 years
and after 50 years. B cell ALLs (B-ALL) involve arrested development
at the very early common lymphoid progenitor stage, before
commitment to the B cell lineage. Thus, no B cell progenitors or B
cell specific gene expression is observed. T cell ALLs (T-ALL) involves
arrested differentiation of thymocytes. While a large body of work
supports beneficial effects of VDD-dependent differentiation in
treatment of AMLs, very little is known about the role of 1,25D in
regulating lymphopoiesis and ALLs. This may be ascribed to a study
involving in vitro bone marrow cultures under conditions of
myelopoiesis or B lymphopoiesis, which identified specific role
of 1,25D in regulating myelopoiesis, but not B lymphopoiesis
[Dorshkind et al., 1989]. In addition, Antony et al. [2012] showed that
1,25D had no effect on lymphoblastic leukemia cell proliferation, and
actually had a modest effect of impairing dexamethasone cytotoxici-
ty and induction of apoptosis. On the contrary, Consolini et al. [2001]
reported significant inhibition of the growth of normal andmalignant
lymphoid progenitors by 1,25D, despite lack of detectable VDR
expression on leukemic blast cells, suggesting a leukemia cell-
extrinsic function of 1,25D in regulating leukemogenesis. Consider-
ing the tightly controlled yetmultifactorial variability in these in vitro
experiments, further detailed investigations into leukemia cell-
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intrinsic and -extrinsic effects of VDDs in the physiologically relevant
in vivo setting of human malignancies and animal models are
strongly warranted.

Even in the case of differentiation therapy, there are potentially
promising newer avenues of research that will benefit from
systematic studies in the future. Studies by Chen et al. [2007]
demonstrate an inhibitory effect of 1,25D on antibody production,
plasma cell differentiation and memory B cell development,
suggesting that it is possible to manipulate the B cell differentiation
state through 1,25D signal control. Differentiation of mature
peripheral B cells into plasma cells or memory cells is tightly
coordinated by a set of well-defined transcription factors, such as
Blimp-1, XBP-1, IRF-4, which drive plasma cell differentiation, and
Pax5 and MITF, which define B cell lineage specific gene expression
and are also associated with memory B cell state [Kalia et al., 2006].
Pax5, the B cell lineage transcription factor is commonly mutated in
B-ALL [Mullighan et al., 2007], and its ectopic expression in mature
peripheral B cells leads to de-differentiation into uncommitted
progenitors and the rescue of T cell development in the thymus
[Cobaleda et al., 2007]. There is increasing evidence demonstrating
1,25D signaling cross-talk with a variety of transcription factors, such
as Bcl-6 [Nurminen et al., 2014], HIF-1a [Nolan et al., 2015], C/EBPa
[Dhawan et al., 2014], STATs [Lange et al., 2014], and RUNX2
[Stephens andMorrison, 2014]. Therefore, we expect that the growing
systems biology approach towards delineating 1,25D-dependent gene
regulatory networks [Carlberg, 2014] will identify novel molecular
targets for manipulating lymphoid differentiation during leukemia
which will propel the development of a full immune repertoire in
1,25D-based differentiation therapy.

VITAMIN D ROLE IN IMMUNE MODULATION

In addition to its effects on hematopoiesis, vitamin D is being
increasingly recognized for its post-developmental immune-modu-
latory effects on functional properties of mature immune cells. While
development of mature T cells is largely unaffected in VDR KO mice,
in wild type mice VDR expression is increased in activated T cells
[Bhalla et al., 1983; Provvedini et al., 1983]. Also, 1,25D inhibits
lymphocyte proliferation [Lemire et al., 1984, 1985; Vanham et al.,
1989; Chen et al., 2014] and suppresses T helper cell differentiation
into inflammatory subsets (such as TH1 and TH17) [Lemire et al.,
1995; Joshi et al., 2011; Palmer et al., 2011]. Consistent with this,
1,25D has been shown to reduce the production of IFN-g, TNF-a, IL-2
and IL-17 by CD4 and CD8 T cells in vitro, and enhance the secretion
of immunosuppressive cytokines such as IL-10 and TGF-b [Willheim
et al., 1999; Thien et al., 2005; Prabhu Anand et al., 2009]. 1,25D also
regulates migration of T cells to specialized niches such as the GI tract
[Yu et al., 2008] and the skin by altering the expression of skin-
homing receptors [Sigmundsdottir et al., 2007], thereby modulating
the tissue microenvironment.

In the periphery, 1,25D also promotes development of CTLA-4- and
FOXP3-expressing regulatory T cells [Jeffery et al., 2009] through
direct effects on T cells as well as indirect effects on tolerogenic
dendritic cells [Griffin et al., 2001]. Collectively, these anti-
inflammatory and immunosuppressive activities of vitamin D imply

a beneficial role for 1,25D supplementation during allogeneic bone
marrow stem cell transplantation, the only, albeit hazardous, curative
therapy for AML [Zuckerman and Rowe, 2014]. It is intriguing to
speculate that 1,25D supplementation during bone marrow trans-
plantation may induce the development of tolerogenic DCs and
immunosuppressive T regulatory cells (Tregs). These may act
synergistically with the anti-inflammatory and anti-proliferative
effects of 1,25D on effector T cells to curb graft-versus-host disease
(GVHD), a common complication of allogeneic stem cell transplan-
tation. While somewhat simplistic associations between low vitamin
D body status and GVHD have been made [Benrashid et al., 2012; van
der Meij et al., 2013] more direct, systematic investigations in murine
and monkey models are warranted to clarify potential clinical
benefits.

Several in vitro and clinical studies implicate a critical function of
1,25D in reducing inflammation [Zanetti et al., 2014]. Since
inflammation impacts all aspects of tumor biology, including
initiation, growth, angiogenesis, and metastasis [Baumgarten and
Frasor, 2012], beneficial effects of 1,25D supplementation in cancer
control may be mediated through reduction of inflammation. Thus,
detailed delineation of inflammatory targets of 1,25D signaling that
intersect with leukemia growth and immune control represent an
exciting area of future investigation. Additionally, adoptive T cell
therapeutic approach holds much promise in the treatment of ALLs
[Hochberg et al., 2014]. Indeed, success with ALL regression following
CD19 targeted chimeric antigen receptor (CAR) T cell therapy has
reinvigorated efforts at molecularly defining the mechanisms by
which effector and memory CD8 T cell responses can be precision
regulated [Jensen and Riddell, 2014]. With recent studies identifying
critical requirement of 1,25D signals in promoting the development
and survival of potent antigen-specific effector and memory CD8 T
cells [Yuzefpolskiy et al., 2014], it is enticing to predict that vitamin D
supplementation may provide dual benefits of mediating direct anti-
proliferative effects on cancer cells, while also of enhancing anti-
cancer immunity at the same time. Closer evaluations of 1,25D
manipulation in controlling the functional properties of anti-cancer
CD8 T cells in the future are supported by the reported increase in
intratumoral activated CD8 T cells following 1,25D supplementation
in a mouse model of Lewis lung carcinoma [Young et al., 1993] and
patients with head and neck squamous cell carcinoma [Walsh et al.,
2010; Starska et al., 2011a,b].

OUTLOOK

Our knowledge of the health aspects of vitamin D actions has been
growing exponentially in the past 30 years or so. Having been
regarded as an important guardian of calcium homeostasis and bone
health, it was gradually realized that the actions of vitamin D in the
mammalian body also include the control of important components
of cell proliferation and differentiation, inflammation and immunity.
Clearly, an understanding of these controls is likely to have important
consequences for cancer prevention, and potentially for treatment of
cancer and immune-based diseases. Most recently, the effects of
vitamin D on metabolism and cardiovascular system are coming
under scientific scrutiny. Thus, in a true sense, the physiological form
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of vitamin D can be regarded as a molecule with holistic properties.
Unfortunately, according to many in the field, the medical
establishment has been slow to accept this, and for years
recommendations for adequate daily requirements for vitamin D
have been principally based on its bone health value. This “Prospect”
is focused on hematopoietic neoplasms, and it is argued that the
future in differentiation-based therapy of leukemia is most likely to
lie in the use of rational combinations with compounds that enhance
its actions. This will depend on the still developing basic knowledge
underlying the clinical manifestations of vitamin D insufficiency, and
the recently emerging successes in clinical trials may encourage
society to increase the resources for research in this promising field of
translational studies.
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